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Abstract

A supercell storm is a tall, rotating thunderstorm that can generate

hail and tornadoes.  Two models exist for the development of the storm’s

rotation or mesocyclone—the conventional splitting-storm model, and

the more recent pulsing inertial oscillation (PIO) model, in which a

nonlinear pulse represents the supercell.  Although data support both

models and both could operate in the same supercell, neither model has

satisfactorily explained the tornadic cyclone.  A tornadic cyclone is an

elevated vorticity concentration of Rossby number  Ro 1000  that

develops within the contracting mesocyclone shortly before a major

tornado appears at the surface.  We now show that if the internal

temperature excess due to latent energy release is limited to the realistic

range of 12 K to +12 K, the PIO model can stall part way through the

pulse in a state of contraction and spin-up.  Should this happen, the

stalled-PIO model can evolve into a tornadic cyclone with a central

pressure deficit that exceeds 40 mb, which is greater than the largest

measured value.  This simulation uses data from a major tornadic

supercell that occurred over Oklahoma City, Oklahoma, USA, on May 3,

1999.  The stalled-PIO mechanism also provides a strategy for human

intervention to retard or reverse the development of a tornadic cyclone

and its pendant tornado.

1. Introduction

Supercell storms are tall rotating thunderstorms that can generate hail and tornadoes.  Doppler radar

images of a hailstorm (Miller, Tuttle, and Knight 1988) show a complex structure that includes an updraft

that peaks at midheight, two downdrafts, and a mesocyclone.  These features evolve in an environmental

flow whose velocity increases and rotates with height.  The environmental flow includes a boundary layer

at the surface, a highly sheared layer near the storm top, and a midtropospheric layer in which the envi-

ronmental flow is blocked and must circumnavigate the storm (Brandes 1981).  Our modeling study,

which is still in a rudimentary state, is limited to the midtropospheric layer and assumes that compatible

flows exist in the boundary and upper layers.

Latent energy release drives the vertical flow; however, the source of the rotational flow or mesocy-

clone is controversial.  Two models exist for the generation of the mesocyclone.  The first is the conven-

tional splitting-storm model, as reviewed by Doswell (2001), Church et al. (1993), Ray (1986), Klemp

(1987), Kessler (1986), Bengtsson and Lighthill (1982), Schlesinger (1980), and others.  The second is

the pulsing inertial oscillation (PIO) model (Costen and Miller 1998 and Costen and Stock 1992).  Data

exist that support both the conventional and the PIO models, and both mechanisms could operate in the

same supercell.

In the conventional model, a buoyant updraft tilts and stretches horizontal vortex lines in the vertically

sheared environmental flow to produce two counterrotating supercells that separate.  Such splitting super-

cell pairs are observed.  In fact, we will use data from the cyclonic member of a splitting pair that oc-

curred on May 3, 1999 over Oklahoma City, Oklahoma, USA.  However, Davies-Jones (1986) states that

observed supercells are predominantly cyclonic.  In his modeling studies, Klemp (1987) explains this

apparent discrepancy by showing that environmental conditions documented by Maddox (1976) will often

weaken or suppress the anticyclonic member of the pair.
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Data supplied by Davies-Jones (1986) show that the generation of a major tornado requires a transition

wherein the mesocyclone, or a portion thereof, contracts and spins up to a Rossby number Ro 1000,
where Ro is the ratio of the vertical spin rate of the cyclone core to the local vertical spin rate of the Earth.

This contraction first occurs in the midtropospheric layer, as observed by Doppler radar data presented by

Davies-Jones (1986), Vasiloff (1993), and Burgess and Magsig (2000).  The contracted mesocyclone is

termed a tornadic cyclone because its development aloft precedes the onset of the strongest tornadoes at

the surface.

Although the conventional model is well developed, it has not satisfactorily simulated a tornadic

cyclone.  Modeling studies by Wicker and Wilhelmson (1995) and Wilhelmson and Wicker (2001) pro-

duced vorticity concentrations that are strong enough for a tornadic cyclone; however, these concentra-

tions originated at the surface instead of aloft—in conflict with the data.  Modeling studies of the flow in

a rotating cup by Trapp and Davies-Jones (1997) showed that the height where tornadic vorticity first

occurs depends on the vertical distribution of buoyancy; however, it is not clear that their results apply to

a free mesocyclone in the troposphere.

The PIO model is in its infancy and does not yet resolve individual updrafts and downdrafts but

instead treats the average vertical flow in the core—represented by a uniform time-dependent vertical

flow.  The model is essentially a Rankine vortex that has been generalized to include the Coriolis force

plus this uniform vertical flow within its circular cylindrical core.  Ferrel (1889) attributed supercell rota-

tion to the Coriolis force.  Scaling studies by Morton (1966), Wallace and Hobbs (1977), Davies-Jones

(1986), Holton (1992), and others have since concluded that the Coriolis force is too weak to spin up a

supercell storm in the observed time.  However, scaling studies rely upon the mechanism, and none of

these studies considered the PIO mechanism.

In the compressible continuity and momentum equations used in the PIO model, the vertical tempera-

ture lapse of the middle troposphere is neglected and the density is taken to decrease exponentially with

height.  For our purposes, this approximation is better than the constant density approximation used in the

analytic studies of supercell storms by Rotunno and Klemp (1982) and Lilly (1986).  However, we will

retain the actual temperature lapse in the energy equation and for stability considerations of the midtropo-

spheric layer.  Our practice of neglecting terms where they are presumed to be unimportant and retaining

them where they are known to be important has precedent elsewhere in Atmospheric Science, for exam-

ple, in the Boussinesq approximation (Menke and Abbott 1990), which we do not use.

In our postulated environment, rising parcels of air expand (dilatate) and descending parcels contract.

The key approximation used in the PIO and stalled-PIO models is that the horizontal divergence in the

core results predominantly from this three-dimensional dilatation; that is, the horizontal divergence is

approximately equal to the speed of the vertical flow divided by the scale height.  We shall refer to this

approximation as the “dilatation-horizontal divergence” approximation or simply the “DHD” approxima-

tion.  It follows that when the vertical flow in the core is downward, the cylindrical core contracts.  This

contraction causes the core to spin up, partly by increasing the concentration of existing vertical vorticity

and partly by the action of the Coriolis force on the convergent flow.  Likewise, upward flow causes the

core to expand and spin down.  This feature of spin-up occurring in a downdraft is in contrast to the con-

ventional splitting-storm model, where spin-up occurs in an updraft.

Various arguments can be advanced to support the DHD approximation, as in the statement that fol-

lows equation (2.4); however, it seems clearest simply to test the accuracy of the DHD approximation

during the model runs, and this we will do.  The DHD approximation neglects certain terms in the conti-

nuity equation.  We will compute both the retained terms and the neglected terms and will show by plot-

ting their ratio that the DHD approximation is reasonably accurate during our model runs.
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In the PIO model, the generalized Rankine vortex contracts, expands, and translates in the midtropo-

spheric layer in accordance with a nonlinear inertial oscillation, whose period is typically about 19 hr.

The pulse phase of this oscillation, which coincides with the contracted state of the vortex, is identified

with a single cyclonic or anticyclonic supercell.

According to data presented by Costen and Miller (1998), only the pulse phase of the PIO model is

actually observed in the troposphere; that is, the oscillation starts at the beginning of a pulse, proceeds

through the pulse (supercell storm), and terminates shortly afterwards.  Therefore, we will limit our pre-

sent simulations to the pulse phase.  For simulations of the complete period, see Costen and Miller (1998)

and Costen and Stock (1992).

Because of the DHD approximation and the prescribed vertical dependence of density, the continuity

and momentum equations are sufficient to obtain the PIO and stalled-PIO solutions for the vorticity, hori-

zontal divergence, velocity, pressure, core radius, core buoyancy, mesocyclonic circulation, and cloud

base mass influx.  The equation of state for a dry, perfect gas then determines the temperature, which, as

mentioned, turns out to be isothermal, except for a uniform temperature excess or deficit in the core.  The

energy equation serves only to determine the thermal input power or latent energy release that is required

to support the PIO and stalled-PIO solutions.

Although the PIO is driven by latent energy release, the oscillation is controlled by horizontal inertial

flow (Haltiner and Martin 1957 and Holton 1992) that is organized into a radial oscillation.  When viewed

from above (fig. 1(a)), every parcel on the periphery of the contracting core traverses an anticyclonic

circular arc such that the parcel’s centrifugal force balances the Coriolis force and the horizontal pressure

gradient is zero.  Costen and Stock (1992) show that the same is true for every parcel inside the core.

Consequently, the PIO model has no central pressure deficit (prior to a stall).  During contraction, each

parcel in the core is compressed by descending in a uniform downdraft.  When the core reaches its mini-

mum radius and maximum spin-up, the downdraft ceases.  The subsequent inertial trajectories (fig. 1(b))

cause the core to expand and spin down, which requires an upward flow in the core.

Compared with the complicated structure of a supercell described earlier, the PIO model, in its present

state of development, is a zeroth-order approximation.  The vertical speed, horizontal divergence, vortic-

ity, and buoyancy—all of which are uniform in the core of the PIO model—are zeroth-order approxima-

tions to the instantaneous spatial average values of these fields in the core of an actual supercell.  The
vertical flow reversal (described in the previous paragraph) that occurs at the midpoint of the pulse in the
PIO model therefore represents a reversal in the average vertical flow of an actual supercell.

The PIO model determines the amount of core buoyancy required to sustain the oscillation.  The aver-
age downdraft that occurs during spin-up at the onset of a pulse requires a moderate amount of negative
buoyancy that results from evaporative cooling of midtropospheric moisture.  However, the average draft
reversal that occurs at the midpoint of the pulse requires a large spike of positive buoyancy.  This spike is
generated by condensational heating of moist surface air that is lifted in a convectively unstable environ-
ment by the gust front of the downdraft.

Costen and Miller (1998) showed that the available buoyancy range limits the maximum Rossby num-

ber that the PIO can achieve.  We define the available buoyancy by a core temperature excess  T  in the

range ( 12 K T 12 K),  as suggested by sounding data presented by Miller, Tuttle, and Knight

(1988).  The PIO solution then gives a maximum Rossby number of Ro 100,  which is an order of mag-

nitude too low for a tornadic cyclone.  However, we will now show that this same available buoyancy

range can cause the PIO model to stall in a state of contraction and spin-up.  Our objective is to model the
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flow after such a stall has occurred and to demonstrate that it can produce a tornadic cyclone.  Since the

PIO and stalled-PIO models apply in the midtropospheric layer, the resultant tornadic cyclone develops

aloft, in agreement with observation.

A remarkable feature of the PIO model is that its track over the surface of the Earth during the pulse

phase resembles the dogleg track of an actual supercell hailstorm, as shown by Costen and Miller (1998)

and Costen and Stock (1992).  After a stall has occurred, however, the track equations disappear from the

model, so we will not attempt any track simulations here.  The issue of the post-stall track must await

further research.

As mentioned, the PIO and stalled-PIO models will use data from the May 3, 1999 supercell storm

that occurred over greater Oklahoma City, Oklahoma.  This supercell (Supercell A) was the right-hand

member of a splitting supercell pair.  It generated a 1.6-km-wide tornado (Tornado A9) that killed

36 people and injured 583.  This tornado also inflicted property damage of 1 billion United States dollars

(USD) along its 60-km track.  Rated F5 (maximum intensity) on the Fujita scale (Fujita 1973), the tor-

nado possibly reached wind speeds of 318 mph, as indicated by preliminary Doppler radar data.  Burgess

and Magsig (2000) present time-height data that confirm that an elevated tornadic cyclone developed in

Supercell A about 5 min before the start of Tornado A9, that this tornadic cyclone persisted with some

variation throughout the 80-min lifetime of Tornado A9, and that the tornadic cyclone dissipated about

3 min before this tornado ended.

Although we use data from Supercell A, we will not attempt a precise simulation of this storm.  In-

stead we will explore the capabilities of the PIO and stalled-PIO models within the framework of these

data.  While awaiting publication of a value for the mesocyclonic circulation of Supercell A, we have

used a typical value given by Davies-Jones (1986) of max = 5 105  m2  s 1.   We will always initialize

the core radius such that this value for circulation is achieved at the time of maximum contraction

and spin-up.  As mentioned, the model computes the thermal input power Q(t)  from latent energy

release and the mass influx at cloud base M (t).   While also awaiting these values from Supercell A,

we have compared our computed values with measured reference values of Qref =1.9 1013  W  and

M ref =1.2 109  kg s 1   presented by Foote and Fankhauser (1973) for a different supercell.

Sections 2 to 4 give a review of the PIO model and point up a naturally occurring condition that could

cause the model to stall in a state of contraction and spin-up.  Sections 5 and 6 give the mathematics of

tornadic cyclone development after such a stall has occurred.  In section 7, the stalled-PIO model is

applied to Tornadic Cyclone A9, with some attention given to the possibility of human intervention to

promote early termination.  Concluding remarks are presented in section 8.

2.  Relevant Aspects of PIO Model

2.1.  Tangential Coordinate Frame

The model uses the local tangential Cartesian frame shown in figure 2.  The origin is fixed at mean sea

level (MSL) on the Earth’s surface, and the x,  y,  and z  axes point eastward, northward, and upward,

respectively.  (Cylindrical coordinates r,  ,  and z  are also used, where x = r cos  and y = r sin .)
Although the x  and y  axes do not curve with the Earth’s surface, Haltiner and Martin (1957) show that

this frame is adequate for describing tropospheric flows within a horizontal radius of about 60 km. This

radius is sufficient to contain the convective core of a supercell, but not all the outer flow.  In this frame,
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the fluid velocity is denoted by v = (u,v,w)  (m s 1), the vorticity by = curlv = ( , , )  (s 1), the

divergence by 
 
D = divv = u / x+ v/ y+ w/ z  (s 1), and the angular velocity of the Earth by

   
= (0,

y
,

z
)  (rad s 1).  The components 

 y
 and 

  z
,  although slowly varying functions of 

  
y,  are

treated as constants, which is reasonable for the horizontal radius given previously.

2.2.  Generalized Rankine Vortex

The generalized Rankine vortex shown in figure 2 is intended to represent the convective core of a

supercell storm that upon further contraction and spin-up can become a tornadic cyclone.  The core radius
is 

  
a(t).   The centerline is located at 

  
[x

c
(t), y

c
(t)].   The vertical vorticity 

  
(t)  is uniform inside the core

  
[r < a(t)]  and zero in the outer region 

  
[r > a(t)].   The midtropospheric layer, which is between the

planetary boundary layer below and the highly sheared layer above, is given by 
  
(b z h).   The density

 (kg m 3) is taken to decrease exponentially with height   z.   This stipulation neglects the temperature

lapse between  b  and   h.   Rising/falling parcels of air dilatate and contribute to the divergence 
  
D(t),

which is also taken to be uniform inside the core and zero in the outer region.  The core fluid is uniformly
buoyant, with a normalized density deficit 

  
B(t),  which is called simply the buoyancy.  Lateral entrain-

ment, friction, and heat conduction are neglected, which is reasonable for a supercell storm in the mid-
tropospheric layer.

The density of the outer fluid at radius a is given by

  
0(a, z) =

b

0 e Z
(2.1)

where the fields in the outer region are distinguished by the superscript 0 and   Z z b.   The coefficient

  b

0
 and the inverse density scale height  (in m 1) are constants.  Inside the core, the density is given by

  
(z,t) =

b

0[1 B(t)]e Z
(2.2)

The buoyancy 
  
B(t) <<1,  because it corresponds to a temperature excess or deficit of at most 12 K, as

mentioned, and terms of 
  
O(B

2 )  will always be neglected.

The continuity equation is given by

   t
+ v + D = 0 (2.3)

Substituting the inner density (eq. (2.2)) in equation (2.3) and dividing by  gives

   B w+ D = 0 (2.4)

where an overhead dot denotes an ordinary time derivative.  Retaining the effects of 
  
B(t)  on the buoyant

force but neglecting its effects on 
  
D(t),  we have

  
D(t) = w(t) (2.5)
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which is the key approximation used in both the PIO and stalled-PIO models, wherein D and  w  will be

used interchangeably.  Equation (2.5) confirms that the vertical component of velocity 
  
w(t)  is also

spatially uniform inside the core so that 
  
D(t)  is purely horizontal divergence given by

  

D(t) =
u

x
+

v

y
(2.6)

Hence, approximation (eq. (2.5)) states that the horizontal divergence inside the core results

predominantly from the dilatation of ascending/descending air parcels.  We call equation (2.5) the

“dilatation-horizontal divergence” approximation, or simply the “DHD” approximation.  To check the

accuracy of this approximation, we will plot the ratio 
  
R

DHD approx
 of neglected to retained terms in

equation (2.3); for the PIO model this ratio is given from equation (2.4) by

   

R
DHD approx
PIO

=
B

D

(2.7)

Also included in the core is a horizontal flow with vertical wind shear that is represented by the constants

 
U

b
 and 

 
V

b
 and the horizontal vorticity components 

  
(t)  and 

  
(t).

3.  Inner Reduction

3.1.  Velocity Field

The complete velocity field inside the core is given by

  
u(x, y, z,t) =Ub + (t)Z +

1

2
[D(t)X (x,t) (t)Y ( y,t)] (3.1a)

  
v(x, y, z,t) =Vb (t)Z +

1

2
[D(t)Y ( y,t)+ (t)X (x,t)] (3.1b)

  
w(x, y, z,t) = w(t) =

D(t)
(3.1c)

where 
  
X (x,t) x x

c
(t)  and 

  
Y ( y,t) y y

c
(t).   The constants 

 
U

b
 and 

 
V

b
 represent the stationary part

of the horizontal flow inside the core, and 
  

(t)Z   and  (t)Z  represent the inner vertical wind shear.

The terms 
  

(t)Y/2  and  (t)X /2  represent the inner flow of the Rankine vortex.  The angular velocity of

the core fluid   (in rad s 1) and the Rossby number Ro are given by

  

=
2

Ro =
2

z

(3.2)

The terms 
  
D(t)X/2   and    D(t)Y /2  represent the inner radial horizontal flow that results from the

horizontal divergence.
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3.2.  Momentum Equation

The inviscid, compressible momentum equation is given by

   

v

t
+ v +

v
2

2
+

p
+ + 2 v = 0 (3.3)

where   v
2

 is   v v,  p  is the pressure (Pa),  is the geopotential 
 
gz (m2 s 2), and 

 
g  is the gravitational

acceleration (9.81 m s 2).

Solving equation (3.3) for 
 

p  and substituting the inner velocity field (eqs. (3.1)), we find

  

p

x
=

2
G

1
G

3
v+ Du( ) (3.4a)

  

p

y
=

2
G

2
+G

3
u+ Dv( ) (3.4b)

   

p

z
= g +

D
2

y
u (3.4c)

where

   
G

1
DX  Y Dx

c
+  y

c
+ 2 Z + 2

D
+ 2

y( ) (3.5a)

   
G

2
DY +  X  x

c
Dy

c
2 Z 2

D
(3.5b)

  
G

3
+ 4

z
(3.5c)

3.3.  Second-Order Partial Derivatives and Nonlinear Harmonic Equations

In the midtropospheric layer, we assume that p and its first- and second-order partial derivatives are

continuous functions of 
  
x, y, and z  (except at radius a, where p must be continuous but its derivatives

could be discontinuous).  It follows for 
  
(r < a,  b z h)  that

  

2
p

x y
=

2
p

y x

2
p

x z
=

2
p

z x

2
p

y z
=

2
p

z y
(3.6)

Substituting the cross derivatives of equations (3.4) in equations (3.6), dividing by 
 

,  and setting the

coefficients of 
  
X , Y ,  and Z  individually to zero in each equation, we obtain the following set of coupled

ordinary differential equations (ODEs):

   

=
1

2
+ 4

z( ) D (3.7a)
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=
1

2
+ 4

z( )+ D (3.7b)

   
= D + 2

z( ) (3.7c)

   

D =
1

2
+ 4

z( ) D
2 (3.8)

   

xc =Ub +
2

y +
2

2 + D2
w+ 2 zUb( )+ D w 2 zVb( ) (3.9a)

   

yc =Vb +
2

2 + D2
w+ 2 zVb( )+ D w+ 2 zUb( ) (3.9b)

3.4.  Pressure Field

To obtain the inner pressure field p, we first substitute equations (3.7), (3.8), (3.9), and (2.2) into the

pressure gradient (eqs. (3.4)), which gives

  

p

x
= b

0e Z (1 B) y

D
(3.10a)

  

p

y
= b

0e Z (1 B) y (3.10b)

   

p

z
= b

0e Z (1 B) g +w 2 y Ub + Z +
1

2
(DX  Y ) (3.10c)

These partial derivatives can now be integrated to obtain p as

   

p(x, y, z,t) = b
0e Z (1 B)

g
1+

w

g

2 y

g
+Ub + Z +

1

2
(DX  Y ) (3.11)

This result confirms that the PIO model has no pressure deficit at its center, where   X =Y = 0,  which is

consistent with inertial flow.  According to Davies-Jones (1986), the pressure deficit in mesocyclones is

typically about 5 mb, although it has been measured as high as 34 mb.  This discrepancy indicates the

occurrence of a partial transition from inertial flow to cyclostrophic flow, where the centrifugal force on

parcels is balanced by the radial pressure gradient, as discussed in sections 5 and 6.

Thus far, we have reduced the inner solution to a time-dependent set of ODEs, except that we have no

equations for 
  
a(t)  or 

  
B(t).   These quantities are determined by the jump conditions at the cylindrical

interface between the inner and outer solutions, as shown in figure 2.  Instead of attempting a nonsymmet-

ric, translating outer solution, we will revert to an axisymmetric, nontranslating solution that is sufficient

for obtaining 
  
a(t)  and 

  
B(t).   We assume that the results so obtained apply approximately to the
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translating model.  This assumption will fail if the inner flow of the translating model does not block the

relative environmental wind, which will then erode the core.

4.  Axisymmetric, Nontranslating PIO Model

4.1.  Inner Solution

For the PIO model to remain centered on the origin (i.e., for 
   
x

c
= y

c
= 0),  we must take

  
Ub =Vb = = = y = 0.   The velocity (eqs. (3.1)) and pressure (eq. (3.11)) then become, in cylindrical

coordinates,

  
v

r
(r,t) =

D(t)

2
r (4.1a)

  
v (r,t) =

(t)

2
r (4.1b)

  
v

z
(t) = w(t) =

D(t)
(4.1c)

   

p(z,t) = b
0e Z g

1 B(t) 1+
w(t)

g
(4.2)

4.2.  Outer Solution

Because the external vorticity  
0

 and divergence   D
0

 are zero, the outer velocity field is given by

  
(for  r a)

  
v

r

0(r,t) =
D(t)a2(t)

2r
(4.3a)

  
v

0(r,t) =
(t)a2(t)

2r

(4.3b)

  
v

z

0
= w

0
= 0 (4.3c)

The field 
 
v

r
 is continuous at the interface 

  
r = a(t),  as required by the jump conditions for the conti-

nuity and momentum equations.  The field 
 
v  is also continuous, but 

  
w, , D,  and  all have finite dis-

continuities.  The requirement that the interface moves with the fluid gives the desired equation for core

radius

   

a =
Da

2
(4.4)
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The core buoyancy 
  
B(t)  can be determined from the jump condition that the pressure is continuous at

  r = a.   To determine the outer pressure field, we first solve the momentum equation (3.3) for the pressure

gradient in cylindrical coordinates and then substitute the outer velocity field (eqs. (4.3)) and the tenden-

cies (eqs. (3.7c), (3.8), and (4.4)) to obtain

  

p
0

r
=

gF
0

r
1

a
2

r
2

(4.5a)

  

p
0

= 0 (4.5b)

  

p
0

z
= g

0
(4.5c)

where F, the Froude number, is a constant of the motion given by

  

F =
a

2

4g

2 + D
2( ) (4.6)

Its constancy for the PIO model is demonstrated by taking its time derivative and substituting the

tendencies (eqs. (3.7c), (3.8), and (4.4)).

As with the inner solution, we require

  

2 p0

r z
=

2 p0

z r
(r > a,  b z h) (4.7)

Consequently, the outer density 
 

0  must satisfy

  

0

r
=

F

r
1

a
2

r
2

0

z
(4.8)

The solution of this equation that satisfies the boundary condition (eq. (2.1)) at  r = a  is given by

  

0(r, z,t) =
b

0 a

r

F

exp Z +
F

2
1

a
2

r
2

(4.9)

Substituting this result in equations (4.5) and integrating for the outer pressure, we obtain the hydrostatic

result

  

p0(r, z,t) =
g 0(r, z,t) = b

0 g a

r

F

exp Z +
F

2
1

a2

r2
(4.10)
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Both 
  
p

0(r, z,t)  and 
  

0(r, z,t)  have their maximum values at  r = a  and approach zero as   r ,

which is reasonable for our tangential coordinate frame.  To conform with the notation for the stalled-PIO

model that will be developed in sections 5 and 6, we associate the maximum external pressure 
  
p0(a,b)

and density 
  

0(a,b)  at height  b  with the environmental pressure 
  
pb

envir
 and density 

  b

envir
 at height   b,

which are constants.  Then, by equation (4.10), we have

  
b
0
= b

envir
=

g
pb

envir
(4.11)

and the expressions for the outer pressure (eq. (4.10)), inner pressure (eq. (4.2)), and inner density

(eq. (2.2)) become

  

p0(r, z,t) =
g 0(r, z,t) = pb

envir a

r

F

exp Z +
F

2
1

a2

r2
(4.12)

   

p(z,t) = pb
envire Z 1 B(t)  1+

w(t)

g
(4.13)

  

(z,t) =
g

pb
envir (1 B) e e

(4.14)

4.3.  Buoyancy and Inner Pressure

By equating the outer pressure (eq. (4.12)) and the inner pressure (eq. (4.13)) at   r = a,  we obtain the

desired equation for buoyancy

   

B(t) =
w(t)

g
(4.15)

This expression is similar to that given by Darkow (1986) for the vertical acceleration of a nonentraining

buoyant parcel.  The inner pressure is now independent of t and is given by

  
p(z) = pb

envire Z
(4.16)

By equation (3.8), the buoyancy (eq. (4.15)) for the PIO can also be determined from the formula

  

B
PIO =

1

2 g
+ 4

z( ) D
2

(4.17)

4.4.  Supplementary Formulas

The mesocyclonic circulation  is given by (in m2 s 1)

  
= a

2 (4.18)
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and the cloud base mass influx M by (in kg s 1)

  
M = 2 w  r (r,b,t) 

0
a

dr (4.19)

Substitution of equation (4.14) gives for the PIO

  

M PIO
=

g
a2D(1 B) pb

envir
(4.20)

The temperature is determined from the equation of state for a dry perfect gas

 
p = RT (4.21)

which we apply to both the inner and outer regions, where R, the gas constant, equals 287 J kg 1 K 1.  As

mentioned, the outer temperature   T
0

 in the model is a constant

  
T

0
=

g

R
(4.22)

In practice, this formula determines the inverse scale height  from a measurement of   T
0

,  which we will

take to be the environmental temperature at height   b.   The inner temperature  T  is given by

  
T (t) =T

0 1+ B(t) (4.23)

Thus, the model core is also isothermal, but its temperature varies with the buoyancy.  Solving equa-

tion (4.23) for B, we confirm that

  

B(t) =
T (t) T

0

T
0

T (t)

T
0

(4.24)

The energy equation for a dry perfect gas, as given by Holton (1992), can be written

  

q = c
p

t
+ v T

t
+ v p (4.25)

where 
 
q  (in W m 3) is the diabatic heating rate, which is usually due to latent energy release, and 

 
c

p

equals 1004 J kg 1 K 1.  Substituting the inner pressure (eq. (4.16)) and temperature (eq. (4.23)) and

integrating over the core volume, we obtain the total thermal input power 
 
Q  (in W) required to support

the PIO

   

QPIO = pb
envir a2

g
cpT 0B+ D

cp

g

dT 0

dz
+1 1 e

h b( )
(4.26)
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As explained, although we have neglected the temperature lapse 
  
dT

0
/dz  in the continuity and momentum

equations, we have retained it here to be more accurate when applying this formula to an actual supercell.

The corresponding water vapor influx 
 
M

v
 (in kg s 1) is given by

 

M
v
=

Q

L
c

(4.27)

where 
  
L

c
,  the latent heat of condensation, equals  2.5 10

6  J kg 1.

4.5.  Maximal PIO Plots

Plots of 
  

T , w,  a, Ro, RDHD  approx , , M , and Q versus  t  are shown in figure 3 for a 2-hr interval

centered on the pulse phase of the PIO.  The corresponding inertial trajectories of parcels on the core

periphery were previously shown in figure 1(b). Although equations (3.7c) and (3.8) have an analytic

solution (Costen and Miller 1998), these two equations and equations (4.4) were integrated numerically

by using a fourth-order Runge-Kutta routine.  The relevant parameters, listed in table 1, are taken from

data on Supercell A that was provided by Edwards and Thompson (2000) and Burgess and Magsig

(2000). 
 
The initial values listed in table 2 were chosen so that the mesocyclonic circulation at maximum

contraction and spin-up has the value 
 max

= 5 10
5

 m
2

 s
1

 and the core temperature excess  T  plotted

in figure 3(a) just stays within the available range 
  
( 12 K T 12 K),  which corresponds to buoyancy

  
B(t)  in the range 

  
( 0.04158 B(t) 0.04158).

As shown in figure 3(a), T  peaks at +12 K, which corresponds to the maximal PIO.  The corre-

sponding core buoyancy drives the vertical speed w  shown in figure 3(b).  By the DHD approximation

(eq. (2.5)), the horizontal divergence D  is proportional to w,  so the core radius a  varies as shown in

figure 3(c).  The resulting peak Rossby number, as shown in figure 3(d), is the largest the PIO mechanism

can produce for the environment of Supercell A.  As mentioned, this value Ro =118.5  is an order

of magnitude less than that required for Tornadic Cyclone A9.  Figure 3(e) is a plot of the ratio

RDHD approx,  as given by equation (2.7), and shows that this ratio is very small except for a brief interval

in the middle of the pulse when it reaches 0.12 as both  B  and D  pass through zero.  We conclude that

the DHD approximation was reasonably accurate during this PIO model run.

The mesocyclonic circulation ,  as shown in figure 3(f), starts out anticyclonic, achieves the targeted

cyclonic peak value of max = 5 105  m2  s 1,  and eventually becomes anticyclonic again, in agreement

with the inertial trajectories shown in figure 1(b).  The cloud base mass influx M  from equation (4.20) is

shown in figure 3(g) and the thermal input power Q  from (4.26) in figure 3(h).  The perturbation in Q  at

t 60 min  results from the  B  term; otherwise, Q  is negative during the downdraft phase and positive

during the updraft phase because downdrafts generally require evaporative cooling and thus are exother-

mic, while updrafts require condensational heating and are endothermic.

A comparison of figures 3(a)–(d) confirms that spin-up occurs in a contracting cylindrical downdraft

that is driven by moderate negative buoyancy.  At the midpoint of the pulse, the contracting downdraft

reverses and becomes an expanding updraft that causes the mesocyclone to spin down.  This rapid draft

reversal requires a large spike of positive buoyancy.
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4.6.  Condition for PIO To Stall

Figure 3(a) depicts an 8 to 1 asymmetry between the +12 K and 1.5 K excursions of the core tem-

perature excess T .   Since the negative value of T  occurs first, we are free to initialize the PIO model,

as shown in table 3, so that T  decreases to a minimum value of 12 K.  The subsequent maximum

value of +96 K is far outside the given available range of ( 12 K T 12 K).   We infer that upon

reaching T =+12 K,  the PIO model would stall, as shown in figure 4(a).  Our task now is to develop a

model that applies after such a stall has occurred.

The physical mechanism shown in figures 1 and 3 gives insights about what should happen after a

stall.  The truncated positive buoyancy shown in figure 4(a) is insufficient to cause the rapid draft reversal

required for the core to expand in accordance with the inertial trajectories shown in figure 1(b).  Conse-

quently, the parcels would become trapped in orbits about the contracted cyclone center.  Since the

Coriolis force could no longer balance the centrifugal force, depressions in the pressure and density would

begin to develop at the center, and the flow would undergo a transition from inertial to cyclostrophic.

5.  Stalled-PIO Solution

To allow for the development of such depressions in pressure and density after the stall, we must gen-

eralize the outer and inner densities as follows.  At the interface r = a,  we now take

0 (a, z, t) = b
0 (t)e Z (5.1)

(a, z, t) = b
0 (t) 1 B(t)[ ]e Z (5.2)

and for the inner density

(x, y, z, t) = (X,Y ,Z, t) 1 B(t)[ ]e Z (5.3)

where B(t)  is now a g i v e n function of t  that is confined to the available range ( 0.04158
B(t) 0.04158),  which corresponds to ( 12K T (t) 12 K).   Although the inner analysis will use

(X,Y ,Z, t)  to establish certain generalities, the model runs will revert to a simplified axisymmetric

(r, t).   Substituting this simplified inner density into the continuity equation (2.3) gives

 

1

t
+ vr

r
B w+D = 0 (5.4)

As mentioned, we will retain the DHD approximation (eq. (2.5)) after the stall, and we will continue to

plot the ratio RDHD approx  of neglected to retained terms by using the formula

 

RDHD approx
stalled PIO

=
1

D
B

t
+ vr

r
ln (5.5)

The same idealized inner velocity fields (eqs. (3.1)) are used in the analysis after the stall, and the

momentum equation (3.3) can be written

2 p = A (5.6)
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where

A1 G1 G3v+Du (5.7a)

A2 G2 +G3u +Dv (5.7b)

 

A3 2g+
2
D 4 yu (5.7c)

and G is given by equations (3.5).  Substituting the density (eq. (5.3)) into equation (5.6), enforcing the

cross-derivative equations (3.6), and defining

L ln Z (5.8)

we obtain

A L = curlA (5.9)

By equation (5.6), we have

curlA = 2
1

p (5.10)

Although the flow at the interface r = a  is baroclinic because of the jump in density, we take the inner

flow to be barotropic so that

curlA = 0             (r < a) (5.11)

and

A L = 0          (r < a) (5.12)

If equations (5.7), (3.5), and (3.1) are substituted into equation (5.11), we obtain

 

=
1

2
+ 4 z( ) D y (5.13a)

 

=
1

2
+ 4 z( )+D yD (5.13b)

 
= D + 2 z( ) (5.13c)

The expression (eq. (5.13c)) for 
 

 is identical to equation (3.7c) for the PIO.  Except for the y  terms,

equations (5.13a) and (5.13b) for 
 

 and 
 

 are the same as equations (3.7a) and (3.7b) for the PIO.

However, after a stall, there are no equations for 
 
D,  

 
xc ,  or 

 
yc  that are comparable to equations (3.8),
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(3.9a), and (3.9b) for the PIO.  The absence of the  D  equation is fortunate because we now need  D  to be

determined solely by the prescribed buoyancy B(t).   The absence of equations for 
 
xc  and 

 
yc  means that

the inner pressure can be determined for any given values of 
 
xc  and 

 
yc;  that is, the track after a stall is

not determined by our midtropospheric model as it was before the stall had occurred.

When results (eqs. (5.13)) are substituted back into equation (5.7), we obtain

 

A1 = X 2 yD Z
2

D xc Ub( )+ yc Vb( )+
2D

4 zVb (5.14a)

 

A2 = Y + 2 y Z xc Ub( ) D yc Vb( )
2D

+ 4 zUb (5.14b)

 

A3 = 2 g+
D

4 y Ub + Z +
1

2
DX Y( ) (5.14c)

where

 

(t) D
1

2
+ 4 z( ) D2 (5.15)

Note that (t)  is a measure of the departure from the PIO after the stall because if equation (3.8) for the

PIO were enforced, (t)  would vanish.

Equation (5.12) is satisfied by taking

L =C1(t)A (5.16)

Integrating this equation for L  gives

 

L =C1

2
X2 +Y 2( )+ D xc Ub( )+ yc Vb( )+

2D
4 zVb + 4 y

D
X

+ xc Ub( ) D yc Vb( )
2D

+ 4 zUb Y + 2 g+
D

2 yUb Z

+2 y DX + Y Z( )Z

+C5 (5.17)

According to equations (5.3) and (5.8), the inner density can be written

= (1 B) eL (5.18)
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or

 

=C6 (t) 1 B( )exp C1

2
X2 +Y 2( )+ D xc Ub( )+ yc Vb( )+

2D
4 zVb + 4 y

D
X

+ xc Ub( ) D yc Vb( )
2D

+ 4 zUb Y + 2 g+
D

2 yUb Z

+2 y DX + Y Z( )Z

(5.19)

The inner pressure p  can now be obtained by substituting equations (5.19) and (5.14) into equation (5.6)

and integrating to obtain the barotropic result

p =
1

2C1(t)
(5.20)

where  is given by equation (5.19).  This intermediate result confirms that equations (5.13) are

acceptable ODEs for the inner vorticity of a stalled-PIO model that can translate with any given velocity

 
xc (t), yc (t)[ ] .   The next step is to obtain the outer solution and apply the jump conditions at the interface

to obtain equations for  a and D.   As with the PIO model, we revert to a simplified axisymmetric,

nontranslating solution that is sufficient for obtaining these two equations.

6.  Axisymmetric, Nontranslating Stalled-PIO Solution

6.1.  Inner Solution

The inner density (eq. (5.19)) and pressure (eq. (5.20)) for the stalled PIO become axisymmetric and

nontranslating by setting 
 
xc = yc =Ub =Vb = = = y = 0.   The inner velocity fields in cylindrical

coordinates are again given by equations (4.1), and the inner density becomes

 

r, z, t( ) =C6 (t)(1 B) exp C1(t) 
1

2
r2 + 2 g+

D
Z (6.1)

Applying the boundary condition (eq. (5.2)) at r = a  gives

 

C1(t) =

2 g+
D

(6.2)

 

C6 (t) = b
0 (t) exp

a2

4 g+
D

(6.3)
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and the inner density (eq. (6.1)) and pressure (eq. (5.20)) become

 

(r, z, t) = b
0 (t)(1 B) exp Z +

1+
D

g

1
r

a

2

(6.4)

 

p(r, z, t) =
g

b
0 (t)(1 B) 1+

D

g
exp Z +

1+
D

g

1
r

a

2

(6.5)

where  is dimensionless and defined by

 

(t) =
a2

4g
(t) =

a2

8g
2D + 4 z( )+D2 (6.6)

6.2.  Outer Solution

The outer velocity field for the stalled-PIO model is again given by equations (4.3) and the equation

for  a  by equation (4.4).  An equation for  D  can be determined from the jump condition that the pressure

be continuous at r = a.   To determine the outer pressure field, we solve the momentum equation (3.3) for

the pressure gradient in cylindrical coordinates and then substitute the outer velocity field from equa-

tions (4.3), 
 

 from equations (5.13c), and  a  from equation (4.4) to obtain

p0

r
=

g 0

r
F

a

r

2

(6.7a)

p0
= 0 (6.7b)

p0

z
= g 0

(6.7c)

where F  is given by (4.6) and

 

(t) =
a2

2g
D 2 z +D2( ) (6.8)

For the PIO, F  was a constant of the motion; however, after the stall, F  becomes time-dependent.

Again we impose equation (4.7), so the outer density 0  must satisfy

0

r

1

r
F

a

r

2 0

z
= 0 (6.9)
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The solution of this equation that satisfies the boundary condition (eq. (5.1)) at r = a  is given by

0 (r, z, t) = b
0 a

r
exp Z +

F

2
1

a

r

2

(6.10)

where we must have 0  for 0 (r, z, t)  to remain bounded as r .   Substituting this result in

equation (6.7) and integrating for the outer pressure, we obtain the hydrostatic result

p0 (r, z, t) =
g 0 (r, z, t) = b

0 g a

r
exp Z +

F

2
1

a

r

2

(6.11)

For the PIO, p0 (r, z, t)  and 0 (r, z, t)  had maximum values at r = a;  however, for the stalled PIO,

these maxima occur at radius rmax,  where

rmax = a
F
1/2

(6.12)

Again we identify these maximum values p0 rmax,b( )  and 
0 rmax,b( )  at height b  with the environ-

mental pressure pb
envir  and environmental density b

envir  at height b,  which are constants.  If we sub-

stitute the radius given by equation (6.12) into the outer pressure (eq. (6.11)) at height z = b,  we can solve

for b
0 (t)

b
0 (t) = b

envir F 2
exp

1

2
( F) = pb

envir

g

F 2
exp

1

2
( F) (6.13)

and the outer pressure (eq. (6.11)) and inner pressure (eq. (6.5)) become

p0 (r, z, t) =
g 0 (r, z, t) = pb

envir F 2 a

r
exp Z +

1

2
F

a

r

2

(6.14)

and

 

p = pb
envir (1 B) 1+

D

g

F 2
exp Z +

1

2
( F)+

1+
D

g

1
r

a

2

(6.15)

6.3.  Buoyancy and  D

By equating the outer pressure (eq. (6.14)) and the inner pressure (eq. (6.15)) at r = a,  we again obtain

the result (eq. (4.15)); but now, after the stall, the buoyancy B(t)  is given, and w  (or D)  is determined
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by integrating this equation.  After the stall, equations (4.22) and (4.23) for the outer and inner tempera-

tures also remain valid.  With equation (4.15) substituted, the inner pressure (eq. (6.15)) becomes

p(r, z, t) = pb
envir F 2

exp Z +
1

2
( F)+ 1

r

a

2

(6.16)

where

(t) = (1 B) =
a2

8g
2 gB (1 B) + 4 z( ) D2{ } (6.17)

and now

(t) =
a2

2g
gB 2 z +D2( ) (6.18)

We substitute equations (6.16) and (4.23) into equation (4.25) and integrate over the volume of the core to

obtain the thermal input power

 

Qstalled PIO = pb
envir a2 F 2

exp
1

2
( F) 1 exp (h b)[ ]{ }

                    
g
cpT

0B+D
cp
g

dT 0

dz
+1

F

2 F
1

2
ln

F e 1( )
+

2
e (1 ) 1 (6.19)

By equations (6.4), (4.15), and (6.17), the inner density  is given by

(r, z, t) =
g
(1 B)p(r, z, t) = pb

envir (1 B)
g

F 2
exp Z +

1

2
( F)+ 1

r

a

2

(6.20)

and by comparison with equation (5.3)

(r, t) = pb
envir

g

F 2
exp

1

2
( F)+ 1

r

a

2

(6.21)

Substituting equation (6.21) into equation (5.5) gives for the ratio

 

RDHD approx
stalled PIO (r, t) =

1

D
B

F

2 F
1

2
ln

F
1

r

a

2

(6.22)
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Because this ratio depends upon r,  we will evaluate it during model runs at r = 0,  r = 0.707a,  and r = a
and choose the maximum (i.e., conservative) value.  The cloud-base mass influx after the stall is obtained

by substituting equation (6.20) into equation (4.19).

M stalled PIO =
g
a2D(1 B)pb

envir F 2
exp

1

2
( F)

1
e 1( ) (6.23)

6.4.  Central Pressure Deficit

The environmental pressure penvir (z)  is obtained as a function of height by substituting equa-

tion (6.12) into equation (6.14)

penvir (z) = pb
envire Z (6.24)

We find the minimum internal pressure pmin (z, t)  at the center of the mesocyclone, which is now

becoming a tornadic cyclone, by setting  0=r   in equation (6.16)

pmin (z, t) = pb
envir F 2

exp Z + +
1

2
( F) (6.25)

The central pressure deficit p(z, t)  is defined as

p(z, t) = penvir (z) pmin (z, t) (6.26)

or

p(z, t) = pb
envire Z 1

F 2
exp +

1

2
( F) (6.27)

where ,  ,  and F  are given by equations (6.17), (6.18), and (4.6), respectively.  In our calculations, we

will always evaluate p  at height b  where Z = 0.

7.  Tornadic Cyclone Solution

7.1.  Constant B  After Stall

Figure 4 shows the stalled-PIO solution for Tornadic Cyclone A9, where the truncated value of B  is

held constant after the stall that starts at t 21  min.  The environmental parameters are given in table 1

and the initial values in table 3.  (Purely for pedagogy, this figure also shows the plots for a fictitious

unstalled PIO where T  unrealistically reaches +96 K.)  The truncated buoyancy shown in figure 4(a) is

insufficient to cause the rapid draft reversal required by the PIO (fig. 4(b)), so the contracting downdraft

is prolonged, as shown in figures 4(b) and (c).  Prolongation of the contracting downdraft spins up the

Rossby number well above the tornadic cyclone value of Ro 1000,  as shown in figure 4(d).  The ratio
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RDHD approx  from equations (2.7) and (6.22) is plotted in figure 4(e).  This ratio is small, except for a

brief interval when it reaches 0.28 just before the stall begins.  Therefore, the DHD approximation was

reasonably accurate during this segment of the calculation.

The prolonged downdraft of the stalled-PIO model is in qualitative agreement with the collapsing

phase of a supercell storm, as described by Rotunno (1986): “The BWER [bounded weak echo region]

begins to fill, and downdrafts intensify ... . In association with this development, a tornado forms at full

strength and may last from a few to several tens of minutes.”  The prolonged downdraft is also in agree-

ment with more recent observations by Trapp (2000) of weak-to-moderate downflow throughout the

entire depth of a mesocyclone just before tornadogenesis.  It is also in agreement with early observations

by Fujita (1972) that tornadoes are most likely to occur during a decrease in the height of clouds that

overshoot the top of a supercell.

The mesocyclonic circulation  is plotted in figure 4(f), where it again achieves the value

max = 5 105  m2  s 1.   The initial values for  and D  in table 3 were chosen so that 0  at t = 0.
The cloud base mass influx M  is plotted in figure 4(g) and the thermal input power Q  in figure 4(h).

Both of these quantities go through zero at maximum spin-up when w  goes through zero.

The central pressure deficit is computed from equation (6.27) at height z = b  and is plotted in fig-

ure 4(i).  Before the stall, we see that p = 0,  which is consistent with inertial flow.  After the stall, p
builds to a value that substantially exceeds the maximum measured value of 34 mb. The radial depend-

ence of the pressure at height z = b  is plotted in figure 4(j) before the stall and at various times after the

stall.  These plots were computed from equation (6.16) for r a  and from equation (6.14) for r a.

7.2.  Extending Lifetime of Simulated Tornadic Cyclone

An obvious shortcoming of our simulated tornadic cyclone is that it lasts for only about 4 min, while

Tornadic Cyclone A9 lasted for 80 min.  According to figures 4(b)–(d), the simulated tornadic cyclone

began to expand and spin down when w  became positive at t 25.7 min.   However, should we prescribe

that the buoyancy B 0  as w 0,  then by equations (2.5), (4.15), and (5.13c), it follows that

 
D, w, D,  and 0  also, and the simulation would stay in a state of maximum spin-up indefinitely.

(Recall that for an actual storm, B = w = 0  means that the average buoyancy and average vertical flow

would remain zero; that is, the updrafts and downdrafts would remain in balance.)

We can try to apply this intuitive argument to our mathematical solution.  However, should we set

 
B = w = D = D = = 0,  we immediately encounter two problems:  (a) as given by equation (6.18), 

would then be negative and our solution would lose its validity because the outer pressure (eq. (6.14))

would become unbounded as r ;  and (b) the DHD approximation would become inaccurate because

the ratio RDHD approx,  as given by equation (6.22), could become very large.  To solve problem (a), we

will assume that when Ro 1000,  we may neglect the Coriolis force by letting z 0  so that the trou-

blesome term 2 z  disappears from equation (6.18).  The transition from inertial to cyclostrophic flow

that occurs after the stall supports this assumption.  We can ameliorate problem (b) by specifying that as

B 0, D 1.875 10 5 s 1  instead of going to zero, which corresponds to w  0.158 m s 1.   Al-

though the core continues to contract, Ro  increases by less than 10 percent during the 80-min simulated

lifetime, and the DHD approximation remains reasonably accurate.
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Implementing this approach after the stall, we replace the constant B  with

B '(t) =
12

288.6
1 Hn t t0( ) (7.1)

and the constant z  with

z' (t) = z 1 Hn t t0( ) (7.2)

where Hn (t)  is a smoothed Heaviside unit step function defined by

Hn (t) =
1

2
1+ tanh(nt)[ ] (7.3)

The values n = 0.011111  and t0 =1543.7 s  provide a smooth transition and achieve the target value

for D  (or w)  given previously.  The resultant plots for a sustained tornadic cyclone are shown in

figure 5.  During the sustained period ( t > 30min), the values for M  and Q  are relatively small

(M 6 105 kg s 1  and Q 3 109 W)  because the updrafts and downdrafts are nearly in balance.

7.3.  Terminating the Tornadic Cyclone

We shall now attempt to simulate the observed termination of Tornadic Cyclone A9 after 80 min.  Our

strategy is to use B(t)  to induce a positive pulse in D(t)  or w(t)  that will cause the core to expand and

spin down, after which w  also returns to zero.  This approach requires B(t)  to make a positive excursion

followed by an equal negative excursion.  But again we encounter problems: (a) because  goes negative

during the negative excursion of B(t)  and (b) because RDHD approx  has an infinite pole where D(t)  goes

through zero at the onset of its positive pulse.

We can prevent the problem with  by decreasing the negative excursion of B(t),  which has the con-

sequence of leaving D  (or w)  in a somewhat elevated or nonzero final state—which turns out to be for-

tuitous.  Because RDHD approx,  as given by equation (6.22), is a function of both r  and t,  we cannot

circumvent its pole at t 103  min by further tailoring B(t).   However, we can argue that the ratio

RDHD approx  as defined by equation (6.22) could be too severe a test of the DHD approximation, because

anytime that D  passes through zero, we risk such a pole.  Regardless, we will proceed so that the model

will conform to the data.

After the stall, the complete buoyancy is given by

B"(t) =
12

288.6
1 Hn t t0( )+

1.8

3
Hm t t1( ) 3Hm

2 t t1( )+ 2Hm
3 t t1( ) 1 kHs t t1( ) (7.4)

where n = 0.011111,  m = 0.005,  s =1,  t0 =1543.7 s,  t1 = 6761 s,  and k = 0.7432.   On the right-hand

side, the first two terms are the same as in equation (7.1), the third degree polynomial in Hm t t1( )  gives

the terminating bipolar excursion, and the right-most factor decreases the negative part of this excursion.
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For further discussion of polynomials and generalized functions based on the hyperbolic tangent form of

Hn (t),  see Costen (1967).

The complete simulation of Tornadic Cyclone A9 is plotted in figure 6.  It is apparent from figure 6(a)

that we have sought a small perturbation in buoyancy that would be effective in terminating the tornadic

cyclone.  An enlargement of this perturbation is shown in figure 7(a).  The effects on w  and a  are shown

in figures 6(b) and 6(c).  The final elevated value of w  causes an increase in a  and dramatic declines in

both Ro  and p,  as shown in figures 6(d) and 6(e).  The ratio RDHD approx  is plotted in figure 6(f).  The

pole at t 103  min coincides with the final ascent of w  through zero.  The discontinuity in RDHD approx

at t 113  min results from the discontinuity in  B  that occurs between the positive and negative lobes of

T ,  as shown in figure 7(a).

The mesocyclonic circulation ,  as shown in figure 6(g), is unaffected during termination, which con-

firms that the declines in Ro  and p  are the result of core expansion from the induced updraft.  The

mass influx at cloud base M  is plotted in figure 6(h).  The increase in M  that results from the expanding

updraft is seen by enlarging the last 40 min, as shown in figure 7(b).  Near the end, the computed value

for M  is rapidly increasing and, if the computation continued further, M  would soon reach the mea-

sured reference value M ref =1.2 109  kg s 1  reported by Foote and Fankhauser (1973) for a different

supercell.  The thermal input power Q  is shown in figure 6(i), and a similar enlargement is shown in

figure 7(c), where the discontinuity in Q  again marks the end of the positive lobe of T .   Like M ,  Q  is

rapidly increasing, and if the computation continued further, Q  would soon reach the measured reference

value Qref =1.9 1013  W.

During the prolonged phase of the model tornadic cyclone, T = 0  and w = 0.158 m s 1.  Since

these quantities represent average values for an actual storm, we infer that storm longevity requires the

updrafts and downdrafts to be essentially equal in magnitude and the positive buoyancy that drives the

updrafts to be in balance with the negative buoyancy that drives the downdrafts.  According to the model,

termination of the tornadic cyclone requires a thermal input that warms and intensifies the updrafts,

warms and diminishes the downdrafts, or both.  In nature, this thermal input would result from increased

condensational heating, decreased evaporative cooling, or both.  This model-based concept of weakening

a tornadic cyclone by the application of heat is consistent with the observed weakening of tornadic storms

that move from land to water, which is a source of additional heat.

Following Kessler (1972) and others, we speculate how human beings might intervene to trigger the

termination process earlier.  According to figures 7(a) and 7(c), the positive lobe of T  results from a

thermal power input of 11-min duration that peaks at 158 GW.  The average power input is 61 GW,

and the total thermal energy deposited into the tornadic cyclone is 40 TJ.  As a result of this thermal input,

w  increases from 0.158 m s 1 to +10 m s 1.  The negative lobe of T  subsequently reduces w  to

+8 m s 1, and this sustained average updraft causes the core to expand and spin down quickly.

Suppose that we were able to manually input 40 TJ of thermal energy into the tornadic cyclone at

some earlier time with the result that w  is increased to 10 m s 1.  In a convectively unstable troposphere,

this new value for w  could be sustained naturally by latent energy release without further manual input.

If the new value for w  were sustained, we would have successfully triggered the termination process.

Selectively injecting this thermal energy into the downdrafts would avoid augmenting the production of

hail.
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Our value 40 TJ (or 11 million kWh) is an order of magnitude lower than Kessler’s (1972) estimated

input energy of 80 million kWh to prevent the initial development of a supercell storm.  At a rate of

0.1 USD per kWh, 40 TJ would cost 1 million USD.  This expenditure compares favorably with the

1 billion USD property damage plus injuries and loss of life incurred by Tornado A9.

The model also provides insight into forecasting which supercell storms will develop a tornadic

cyclone and produce strong tornadoes.  If the supercell conforms to the PIO model, it can produce hail but

not strong tornadoes.  Therefore, if Doppler radar images show that parcels in the core are following iner-

tial trajectories (as projected on a horizontal plane), the supercell will not produce a strong tornado.

However, should the core trajectories transition from inertial to cyclostrophic, the forecaster can infer that

the PIO has stalled and that the formation of a tornadic cyclone and a strong tornado is likely.

8.  Concluding Remarks

Unlike the PIO model or the conventional splitting-storm model, the stalled-PIO model is capable of

simulating a tornadic cyclone that originates in the midtropospheric layer—in agreement with radar ob-

servations of the strongest tornadic storms.  After the PIO model became stalled in a state of contraction

and spin-up, we were able to tailor the buoyancy in the core so that the stalled-PIO model simulated the

80-min lifetime of intense Tornadic Cyclone A9 that occurred over Oklahoma City, Oklahoma, on May 3,

1999.

The dilatation-horizontal divergence (DHD) approximation used in the PIO and stalled-PIO models

states that the horizontal divergence in the cylindrical core is predominantly due to the three-dimensional

dilatation of rising/falling air parcels.  Thus, the horizontal divergence is approximately equal to the up-

draft speed divided by the scale height.  To check the accuracy of this approximation during our model

runs, we plotted the ratio of neglected terms to retained terms in the continuity equation.  This check was

quite severe because whenever the horizontal divergence passed through zero, the plotted ratio could

blow up.  Such a blowup occurred once, but it was near the end of the run when the tornadic cyclone was

decaying.  Twice the ratio approached the value 0.3, although most of the time the ratio was much less

than 0.1.  We conclude that the DHD approximation was reasonably accurate during our PIO and stalled-

PIO model runs.

The model tornadic cyclone remained in a nearly steady state when the spatial average buoyancy,

average vertical flow, and average thermal input from latent energy release were close to zero, that is,

when the updrafts and downdrafts were in balance.  The tornadic cyclone was terminated by a predomi-

nantly positive pulse of buoyancy that increased the average vertical speed to 8 m s 1.  As a consequence

of the DHD approximation, this sustained updraft caused the tornadic cyclone to expand and spin down

rapidly.

The terminating buoyant pulse required a thermal input of 40 TJ or 11 million kWh.  For Tornadic

Cyclone A9, this thermal input was supplied by latent energy release.  However, we could, in principle,

manually inject this thermal energy to trigger an early termination of the tornadic cyclone and its pendant

tornado.  Our calculated energy value of 40 TJ is an order of magnitude less than previous model-based

estimates for effective human intervention.
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Table 1.  Parameters Used in PIO and Stalled-PIO Models for Tornadic Cyclone A9, Where Meteoro-
logical Values Are From Edwards and Thompson (2000) and Burgess and Magsig (2000).

z , rad s
1 .......................... 4.114 10 5

b,  km MSL ................................1.727

MSL km ,h ...............................7.810

pb
envir,  kPa .................................. 82

,  m 1 ............................ 1.1842 10 4

T 0 (b),  K .................................288.6

dT 0/dz,  K m 1 ......................... 8 10 3

g,  m s 2 ...................................9.81

R,  J kg 1 K 1 ............................... 287

cp ,  J kg 1 K 1 ............................. 1004

Lc,  J kg 1 .............................. 2.5 106

Table 2.  Initial Values Used in Maximal PIO Model Run (Figs. 1 and 3), Where ( 12 K T 12 K)
and max = 5 105  m2  s 1

(0), s 1 .......................... 5.0748 10 5

D(0),  s 1 ......................... 5.4972 10 4

a(0),  km .............................. 71.344656

Table 3.  Initial Values Used in Fictitious PIO Model (Fig. 4), Where ( 12 K T 96 K),  and Stalled-

PIO Model (Figs. 4 to 7), Where ( 12 K T 12 K)  and max = 5 105  m2  s 1

(0), s 1 ......................... 1.03956 10 8

D(0),  s 1 ........................  1.50804 10 3

a(0),  km ................................ 43.9939
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10 km

(a) Contraction and spin-up during first hour.

10 km

(b) Two-hr trajectories.

Figure 1.  Aerial view showing inertial trajectories of parcels on core periphery during 2-hr period centered on

maximal PIO pulse.  (See also fig. 3.)
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(xc(t), yc(t))
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Outer
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Figure 2.  Pulsing inertial oscillation (PIO) model or stalled-PIO model for convective core of supercell storm or

tornadic cyclone.  The core radius is a(t )  and centerline is located at xc (t), yc (t)[ ] .   The horizontal divergence

D(t),  buoyancy B(t),  and vertical components of vorticity (t)  and velocity w(t)  are uniform inside core and

zero in outer region.  The midtropospheric layer extends from heights b  to h.
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(a) Core temperature excess T  versus t.
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(b) Updraft speed w  versus t.

Figure 3.  Maximal PIO plots during 2-hr period centered on pulse.  (See also fig. 1.)  As in all runs, mesocyclonic

circulation at maximum contraction and spin-up has value max = 5 105 m2 s 1.
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(c) Core radius a  versus t.
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(d) Rossby number Ro versus t.   (See eq. (3.2).)

Figure 3.  Continued.
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(e) Ratio RDHD approx  of neglected terms to retained terms in dilatation-horizontal divergence (DHD) approximation

(eq. (2.5)) versus t.   (See eq. (2.7).)
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(f) Mesocyclonic circulation  versus t.   (See eq. (4.18).)

Figure 3.  Continued.
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(g) Cloud base mass influx M  versus t.   (See eq. (4.20).)
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(h) Thermal input power Q  versus t.   (See eq. (4.26).)

Figure 3.  Concluded.
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(a) Core temperature excess T  versus t.
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(b) Updraft speed w  versus t.

Figure 4.  Stalled-PIO plots for Tornadic Cyclone A9, with buoyancy B  held constant after stall.  Also shown for

pedagogy are plots for fictitious unstalled PIO.
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Figure 4.  Continued.
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(e) Ratio RDHD approx  of neglected terms to retained terms in DHD approximation (eq. (2.5)) versus t.   (See

eqs. (2.7) and (6.22).)
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(f) Mesocyclonic circulation  versus t.   (See eq. (4.18).)

Figure 4.  Continued.
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(g) Cloud base mass influx M  versus t.   (See eqs. (4.20) and (6.23).)
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(h) Thermal input power Q  versus t.   (See eqs. (4.26) and (6.19).)

Figure 4.  Continued.
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(i) Central pressure deficit p  versus t.   (See eq. (6.27).)
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Figure 4.  Concluded.



40

–15

–10

–5

0

5

10

15

0 10 20 30 40

t, min

(a) Core temperature excess T  versus t.

–120

–100

–80

–60

–40

–20

0

0 10 20 30 40

t, min

w, m s–1

(b) Updraft speed w  versus t.

Figure 5.  Stalled-PIO plots for sustaining Tornadic Cyclone A9 by decreasing the buoyancy B  and gradually

neglecting the Coriolis force after stall.
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Figure 5.  Continued.
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Figure 5.  Continued.
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Figure 6.  Final stalled-PIO plots for Tornadic Cyclone A9, including its termination by further tailoring of
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Figure 7.  Enlarged plots of final stalled-PIO during termination phase of Tornadic Cyclone A9.
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